

**University of Al-Ameed
College of Pharmacy**

2nd stage , 1st Semester

Practical Physical pharmacy

**Expression of concentrations in
pharmaceutical preparations/Lab 1**

Asst.Prof.Dr. Abdullah Maad

Importance of Physical Pharmacy

- Physical pharmacy is a fundamental course that leads to proper understanding of subsequent courses in Pharmaceutics and pharmaceutical technology.
- Physical pharmacy integrates knowledge of mathematics, physics and chemistry and applies them to the pharmaceutical dosage form development.
- Physical pharmacy provides the basis for understanding the chemical and physical phenomena that govern the in vivo and in vitro actions of pharmaceutical products.
- Enable the pharmacist to make rational decisions on scientific basis concerning the art and technology of solutions, suspensions, emulsions, etc.

Expression of concentration in pharmaceutical preparations

- ▶ Pharmaceutical preparations come in specific concentration expressions whether they are in terms of weight, volume or parts.
- ▶ The presentation of medicines and pharmaceutical products in the forms of concentration is to ensure standardization during quality control and market authorization, uniformity of dose, reproducibility of biological response.
- ▶ The concentration of an ingredient in a preparation expresses the ratio of the amount of a particular ingredient to that of the whole formulation.

Definitions

- **Concentration:** is a **quantity of solute** in a **definite volume of solution**, or **quantity of solute** in a **definite mass of solvent or solution**.
- A **solution** is a homogeneous mixture of two or more substances.
- The **solute** is the substance present in a smaller amount.
- The **solvent** is the substance present in a larger amount.

Solution, Solvent, and solute

- The simplest solution (sugar + water)
- Which is the solvent and which is solute and why?

Methods of expressing concentration in pharmaceutical preparations

- ▶ Molarity (M)
- ▶ Molality (m)
- ▶ Normality (N)
- ▶ Percent concentration (%)
 - ▶ Weight per unit volume W/V %
 - ▶ Volume per unit volume V/V %
 - ▶ Weight per unit weight W/W %
- ▶ Part per million (ppm)
- ▶ International Unit
- ▶ Osmolarity and Osmolality

1. Molarity

Molarity (M):

- The molarity of a solution describes the **number of moles** of the **solute** in a **liter** of the **solution**.
- This is **a commonly seen expression of concentrations** in laboratory researches in the physical sciences, pharmaceutical as well as medicinal chemistry.

- **Molarity** =
$$\frac{\text{Moles of solute}}{\text{Liter of solution}}$$
- **Moles** =
$$\frac{\text{Mass of substance}}{\text{Molecular mass of substance}}$$
- The unit is mol/L with M as symbol.
- Mass of substance= Molarity \times Molecular mass of substance \times Volume (liter)

Example 1:

Substance 'P' is a new analgesic to be formulated as effervescent granules. If 5 g of a substance 'P' with molecular mass 150 g/mole is dissolved in water to form 120 mL solution, calculate the molarity of the solution?

► Solution

No of moles = mass of substance/molecular mass of substance

$$= 5/150$$

$$= 0.033 \text{ moles}$$

Volume of solution is 120 mL = 0.12 L

Thus the molarity of the solution is $\frac{0.033}{0.12} = 0.275 \text{ M}$

Example 2:

Determine the weight of KCl needed to make 250 mL of a 1 M solution. (M.W. of KCl = 74.55 g/mol)?

Solution:

- Volume: $V=250 \text{ mL} = 0.250 \text{ L}$
- Molarity: $M=1 \text{ M}$
- Molecular weight: M.W.=74.55 g/mol

Weight of KCl = $M \times V \times \text{M.W.}$

$$\begin{aligned} &= 1 \times 0.250 \times 74.55 \\ &= \mathbf{18.64 \text{ g}} \end{aligned}$$

Exercises:

- 1) Calculate the molarity of 0.25 g benzoic acid (M.wt is 122.12 g/mole) dissolved in 1.5 L ethanol?**
- 2) Calculate the weight of $\text{Ca}(\text{OH})_2$ required to prepare a 0.5 M solution with a volume of 50 mL, given its Molecular weight is 74.09 g/mol.**

2. Normality

► **Normality** of a solution expresses the number of equivalents of solute contained in 1 L of solution.

$$\text{Normality} = \frac{\text{Number of equivalents of solute}}{\text{Litre of solution}}$$

$$\text{Number of equivalents} = \frac{\text{Weight}}{\text{Equivalent weight}}$$

$$\text{Equivalent weight} = \frac{\text{Molecular weight}}{\text{Valency}}$$

Examples

A patient with hypokalaemia is to be treated with potassium chloride solution. If 60 g quantity of potassium chloride salt is dissolved in water to form a 750 mL solution, what is the normality of the solution? (KCl has a molecular weight of 74.5 g/mole. Valency of $\text{K}^+\text{Cl}^- = 1$)

► Solution

- Equivalent weight =
$$\frac{\text{molecular weight}}{\text{valency}} = \frac{74.5}{1} = 74.5 \text{ g/Eq}$$
- Number of equivalents of the KCl =
$$\frac{\text{weight}}{\text{equivalent weight}} = \frac{60}{74.5} = 0.805 \text{ Eq}$$
- **Normality** =
$$\frac{0.805}{0.75 \text{ L}} = 1.074 \text{ Eq/L or } 1.074 \text{ N}$$

• **Exercise:**

1) Magnesium sulphate is a major component of an antacid; 70 g of the salt was used to prepare a solution that was to be added to aluminum hydroxide to form the desired antacid. Assuming the Magnesium solution prepared was 2.6 L, determine the normality of the solution?

Magnesium sulphate with a valency of 2 ($Mg^{2+} (SO_4)^{2-}$) has a molecular mass of 120 g/mole

3. Molality

- **Molality (m)**: is the number of moles of solute in 1 kilogram of solution mass

$$\text{molality} = \frac{\text{moles of solute}}{\text{weight of solvent in Kg}}$$

- The concern here is the solvent and not the solution.
- One advantage of expressing concentration this way is that the variation in concentration due to temperature fluctuation is avoided.

Example

The chemical structure of a new drug ‘anxietin’ known to calm political tension was recently elucidated and the molecular weight found to be 302 g/mol. In its pure form, 5 g of it dissolved in 60 g of water for injection, elicited an effective blockade of the adrenergic receptors. State the molality of this potent solution.

Solution

- No of moles of solute =
$$\frac{\text{reacting mass}}{\text{molecular weight}} = \frac{5\text{g}}{302\text{g/mol}} = 0.017 \text{ moles}$$
- Thus the 0.017 moles of anxietin was dissolved in 60 g of water.
- The amount that will be in 1 kg (1000 g) of water is
$$= \frac{0.017\text{moles}}{0.06\text{kg}} = \mathbf{0.283 \text{ } m}$$

4. Percentage concentration(%)

Percentage Weight by Volume (% w/v)

- This shows the amount of a given ingredient (in g) present in 100 mL volume of the composition.
- It is readily used in mixtures, infusions and solutions to reflect the concentration of a particular solute in the solution.

$$\% w/v = \frac{\text{Weight of a particular ingredient (g)}}{\text{Volume of composition (mL)}} \times 100$$

Example 1:

Syrup paracetamol is presented as 125 mg/5 mL. Express this as percent weight by volume.

- **Solution**

$$\% \text{ w/v} = \frac{\text{Weight of a particular ingredient (g)}}{\text{Volume of composition (mL)}} \times 100$$

(since 125 mg = 0.125 g)

$$\% \text{ w/v} = \frac{0.125(\text{g})}{5(\text{mL})} \times 100 = 2.5\% \text{ w/v}$$

- So the syrup contains 2.5% w/v paracetamol.

Example 2:

Calculate the weight of glucose required to prepare 250 mL of a 5% w/v solution.

Percentage Volume by Volume (% v/v)

This shows the amount of a given ingredient (in mL) present in 100 mL volume of the composition.

$$\% \text{ v/v} = \frac{\text{Volume of a particular ingredient (mL)}}{\text{Volume of composition (mL)}} \times 100$$

- **Example**

What volume of eucalyptus oil is required to prepare 10,000 mL solution of eucalyptus (0.5% v/v) for inhalation to manage nasal congestion?

- **Solution**

$$\% \text{v/v} = \frac{\text{volume of ingredient}}{\text{Volume of composition}} \times 100$$

$$0.5\% = \frac{v \times 100}{10,000} \Rightarrow v = \frac{0.5 \times 10,000}{100} = 50 \text{ mL}$$

- 50 mL eucalyptus is required for the preparation.

► **Example 2:**

Calculate how to prepare 100 mL of ethanol 70% v/v solution?

- **Solution:**

Percentage Weight by Weight (% w/w)

- This expression of concentration indicates the amount of an ingredient (g) in 100g of a substance.
- It could be the g of a solute in 100 g of the solution or a weight in g of a part in 100 g of the whole.
- It is a common expression seen on topical preparations and solid dosage forms.

$$\% \text{ w/w} = \frac{\text{weight of particular ingredient (g)}}{\text{weight of composition (preparation)}(g)} \times 100$$

Example

Mycoten® cream contains 0.2 g clotrimazole in 20 g tube of cream. State the concentration in % w/w.

- Solution

$$\bullet \%w/w = \frac{\text{weight of particular ingredient}}{\text{weight of composition}} \times 100$$

$$= \frac{100 \times 0.2}{20}$$

$$= 1\% \text{ w/w}$$

Example

How much zinc oxide is required to prepare 50 g of a 20% w/w zinc oxide cream?

Solution:

Experiment 1

Title: preparation of simple solution.

Aim: to prepare 50ml of 0.5 M sodium chloride solution (M. wt NaCl is 58.5gm/mol).

Materials and equipment: sodium chloride, water, beaker, volumetric flask.

Procedure:

1. Find the weight of NaCl.
2. Weight and dissolve the needed amount of NaCl in about 40ml of DW in beaker
3. Stir until dissolve
4. Transfer to a 50 ml volumetric flask
5. Complete the volume by DW up to 50ml

Experiment 2

Title: preparation of simple solution.

Aim: to Prepare 100ml of 0.9 % w/v sodium chloride solution.

Materials and equipment: sodium chloride, water, beaker, volumetric flask.

Procedure:

1. Find the weight of NaCl
2. Weight and dissolve the needed amount of NaCl in about 60ml of DW in beaker
3. Stir until dissolve
4. Transfer to a volumetric flask
5. Complete the volume by DW up to 100 ml

Experiment 3

Title: preparation of simple solution.

Aim: to Prepare 100ml of 70 % v/v ethanol solution.

Materials and equipment: ethanol , water, beaker, volumetric flask.

► Procedure:

1. Find the volume of pure ethanol
2. Place ---- ml of pure ethanol in volumetric flask,
3. Then add enough DW to it up to the mark of 100ml.

Experiment 4

Title:

Preparation of Zinc oxide paste.

Aim:

to Prepare 25g of 25% w/w Zinc oxide paste.

Materials and equipment:

Zinc oxide , white petrolatum , starch, mortar and pestle.

Prepare 25g of 25% w/w Zinc oxide paste.

Zinc oxide 25%

Starch 25%

White petrolatum 50%

► Procedure:

1. Weight the needed ingredients accurately.
2. Triturate the zinc oxide and starch in a mortar and pestle.
3. Incorporate the powder mixture into a small portion of white petrolatum until a smooth nucleus is formed.
4. Add the rest of white petrolatum portion by portion until a smooth paste is obtained.
5. Place in appropriate container and label the container properly.

Thank You